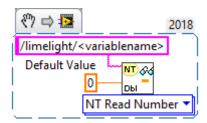
API's

• NetworkTables API completa

NetworkTables API completa


Dados básicos de segmento

Use os seguintes códigos:

Java

Network Table Instance. getDefault(). getTable ("limelight"). getEntry ("< variable name > "). getDouble (0);

LABView

Para retornar os dados:

Parâmetro	Descrição
tv	Se tem algum alvo válido (0 ou 1)
tx	Deslocamento horizontal do ponto alvo (LL1: -27° a 27°/ LL2: -29,8° até 29,8°)
ty	Deslocamento vertical do ponto alvo (LL1: -20,5° a 20,5° / LL2: -24,85° a 24,85°)
ta	Área Alvo (0% de imagem a 100%)
tl	A latência da pipeline (ms). Adicione a <i>cl</i> para conseguir a latência total
cl	Captura a latência da pipeline (ms). Tempo entre o final da exposição da linha intermediária do sensor até o começo do pipeline de rastreamento
tshort	Comprimento lateral do lado mais curto da caixa de detecção (pixels)
tlong	Comprimento lateral do maior lado da caixa de detecção (pixels)
thor	Comprimento horizontal da caixa de detecção (0 - 320 pixels)

Parâmetro	Descrição
tvert	Comprimento vertical da caixa de detecção (0 - 320 pixels)
getpipe	Ìndice de pipeline ativo (09)
json	JSON completo dos alvos de segmentação
tclass	ID de classe do detector neural primário ou do classificador neural
tc	Obtenha a cor HSV média abaixo da região da mira como um <i>NumberArray</i>

AprilTag e dados 3D

Use os seguintes códigos:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").getDoubleArray(new double[6]);

C++

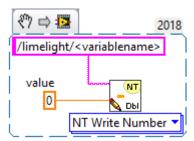
nt::Network Table Instance::GetDefault(). GetTable ("limelight")-

>GetNumberArray("<variablename>",std::vector<double>(6));

Para retornar esse dado:

Parâmetro	Descrição
botpose	Transformação do robô no espaço do campo. Translação (X, Y, Z), Rotação (Roll, Pitch, Yaw), latência total (cl+tl)
botpose_wpiblue	Transformação do robô no espaço do campo (origem na <i>Driver Station</i> azul). Translação (X, Y, Z), Rotação (Roll, Pitch, Yaw), latência total (cl_tl)
botpose_wpired	Transformação do robô no espaço do campo (origem na <i>Driver Station</i> red). Translação (X, Y, Z), Rotação (Roll, Pitch, Yaw), latência total (cl_tl)
camerapose_targetspace	Transformação 3D da câmera no sistema de coordenadas da AprilTag em vista (array (6))
targetpose_cameraspace	Transformação 3D da AprilTag em vista no sistema de coordenadas da câmera
targetpose_robotspace	Transformação 3D da AprilTag em vista no sistema de coordenadas do robô

Parâmetro	Descrição
camerapose_robotspace	Transofmração 3D da câmera no sistema de coordenadas do robô
tid	ID da AprilTag em vista


Controle de câmera

Use os seguintes códigos:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").setNumber(<value>);

LABView

C++

nt:: Network Table Instance:: Get Default(). Get Table ("lime light") -> Put Number ("< variable name>", < value>);

Python

NetworkTables.getTable("limelight").putNumber('<variablename>',<value>)

Para definir esse dado:

ledMode	Definir o estado do LED
[0]	Usa o modo do LED na pipeline atual
[1]	Desligado
[2]	Piscando
[3]	Ligado

camMode	Define o modo de operação
0	Processador de visão

camMode	Define o modo de operação
1	Câmera de <i>Driver</i> (Desabilita o processamento)

pipeline	Define a pipeline atual
09	Define a pipeline 09

stream	Define o modo de gravação da LimeLight
0	Padrão - Transmissão simultânea se tiver uma webcam conectada oa robô
1	PiP Principal - A transmissão da câmera secundária é colocada no canto inferior direito ao da principal
2	PiP secundário - A transmissão da câmera principal é colocada no canto inferior direito ao da secundária

snapshot	Permite aos usuários tirar fotos durante a partida
0	Reseta o modo de foto
1	Tira uma foto

сгор	(<i>Matriz</i>) Define o recorte retângular. A pipeline deve utilizar o corte padrão da interface <i>web</i> . A matriz deve ter 4 entradas.
[0]	X0 - Mín ou Máx valor de X do recorte retângular (-1 a 1)
[1]	X1 - Mín ou Máx valor de X do recorte retângular (-1 a 1)
[2]	Y0 - Mín ou Máx valor de Y do recorte retângular (-1 a 1)
[3]	Y1 - Mín ou Máx valor de Y do recorte retângular (-1 a 1)

camerapose_robotspace_set | (Matriz) Define a posição da câmera no sistema de coordenadas do robô

Java

```
double[] cropValues = new double[4];
cropValues[0] = -1.0;
cropValues[1] = 1.0;
cropValues[2] = -1.0;
cropValues[3] = 1.0;
NetworkTableInstance.getDefault().getTable("limelight").getEntry("crop").setDoubleArray(cropValues);
```

C++

Python

Os algoritmos em Python permitem dados arbitrários d eentrada e saída.

Ilpython - NumberArray enviado pelo *script* de python. Esse dado é acessível pelo código do robô. **Ilrobot** - NumberArray eviado pelo robô. É acessível pelo algoritmo de python.

Contornos

Cantos:

Habilite send contours na aba de Output para transmitir as coordenadas dos cantos

tcornxy - Matriz das coordenadas [x0, y0, x1, y1...]

Alvos brutos:

O Limelight envia três contornos brutos para a NetworkTables que não são influenciados pelo modo de agrupamento. Ou seja, eles são filtrados com os parâmetros da sua tubulação, mas nunca agrupados. X e Y são retornados no espaço de tela normalizado (-1 a 1) em vez de graus.

Dados	Descrição
tx0	Espaço de tela X
ty0	Espaço de tela Y
ta0	Área (0% de imagem a 100%)
ts0	Inclinação ou rotação (-90° a 0°)
tx1	Espaço de tela X
ty1	Espaço de tela Y
tal	Área (0% de imagem a 100%)
ts1	Inclinação ou rotação (-90° a 0°)
tx2 Espaço de tela X	
ty2	Espaço de tela Y
ta2	Área (0% de imagem a 100%)
ts2	Inclinação ou rotação (-90° a 0°)

Mira bruta:

Se estiver usando dados de direcionamento brutos, ainda é possível utilizar suas miras calibradas:

Dados	Descrição
cx0	Mira A X no espaço de tela
су0	Mira A Y no espaço de tela
cx1	Mira B X no espaço de tela
cy1	Mira B Y no espaço de tela